Let us worry about your assignment instead!

We Helped With This MATLAB Programming Assignment: Have A Similar One?

SOLVED
CategoryProgramming
SubjectMATLAB
DifficultyUndergraduate
StatusSolved
More InfoDo My Matlab Homework For Me
508011

Short Assignment Requirements

I need the analytical and numerical solution with the programming code

Assignment Description

Trabajo computacional 1: Entregar 4 de junio

Parte teo´rica:

1.    (Parte A: Para aquellos que nunca han llevado un curso de parciales.) Determine la soluci´on de los siguientes problemas usando separaci´on de variables y por transformada de Fourier, segu´n convenga. (a)

.

(b)

,

(c)

.

(d)

,

(e)

,

2.    Parte B: para los alumnos inscritos en el curso. Problemas 2.3, 2.5 y2.7 del Morton y Mayers. (30 puntos)

3.    Parte C: hacer un programa que resuelva num´ericamente con el m´etodoθ para θ = 0,1/2,1, la ecuacio´n del calor para distintas condiciones de frontera. El sistema de ecuaciones debe resolverse por Thomas. Obtenga resultados con una precisio´n de dos cifras decimales. Justifique su seleccio´n de h y ∆t. Si el problema admite soluci´on estacionaria, termine las iteraciones en el tiempo cuando alcance la soluci´on estacionaria.

(a)     Calibre su programa resolviendo num´ericamente los ejercicios 2, 3 y 5. Contraste su solucio´n num´erica con la exacta.

(b)    Seleccione dos de los siguientes problemas:

i. (obligatorio para Fernando) El valor de una opci´on put europea con vencimiento al tiempo T y con precio de ejercicio K satisface el siguiente problema en EDP:

,

donde S(t) es precio del subyacente con volatilidad σ > 0 y con tasa de inter´es r > 0. Las condiciones iniciales y de frontera son las siguientes:

                                              u(S,T) = Max{K S,0}                     U(0,t) = Ker(tt),

lim u(S,t)       =          0. S→∞

A.      Determinar la solucio´n anal´ıtica de este problema pormedio de la Transformada de Fourier. Seguir los pasos indicados en P. Wilmott, S. Howinson y J. Dewynne. The Mathematics of financial derivatives. Cambridge University Press. 1995

B.      Determinar la soluci´on num´erica transformando el prob-lema a la solucio´n de la ecuaci´on del calor. Usar el m´etodo de Crank-Nicholson con el algoritmo de Thomas con α =

1.

C.      Determinar la soluci´on para los siguientes datos: T =

6,12 meses, σ = 0.1,0.2, r = 0.0435 y K = 10 con S0 =

8.75,10,11.25.

ii.       Determinar y graficar la soluci´on anal´ıtica del siguiente prob-lema de advecci´on-difusi´on para los siguientes valores de α = 1,0.1,0.01 y ν = 1.

.

con condiciones de frontera e iniciales:

                                                                u(0,t) = u(1,t) = 0       u(x,0) = ex/2.

Encontrar la solucio´n anal´ıtica usando el Hint. Resolver el problema anterior por medio de Euler expl´ıcito, Crank-Nicholson y Euler impl´ıcito transformando el problema a la ecuacio´n del calor. Graficar la solucio´n exacta con la num´erica para T = 1.

Hint: La soluci´on) con w solucio´n de la ecuaci´on del calor wt = α2wxx.

iii.    Considere la siguiente ecuacio´n de reaccio´n difusio´n que apareceen la modelacio´n de problemas de cin´etica qu´ımica y en biomatema´ticas. La EDP es de la forma

,

con condiciones de frontera e iniciales:

                                ;      .

A.      Suponga que f(u) = 6u(1 − u). Admite solucio´n estacionaria?

B.      Aplicar el m´etodo de Euler expl´ıcito con la restriccio´n deestabilidad y al evaluar el t´ermino no-lineal en el tiempo n se obtiene el siguiente sistema no lineal a resolver

F(U~ n+1) = Un+1 − ∆tf(U~ n) − (1 − αA)U~ n = 0.

C.      Evaluar la funci’on no lineal evaluando en el tiempo n+1 para dar lugar al problema no lineal:

F(U~ n+1) = Un+1 − ∆tf(U~ n+1) − (1 − αA)U~ n = 0.

Aplicar el m´etodo de Newton conpara el problema anterior para aproximar la soluci´on hasta alcanzar la soluci´on estacionaria, en caso de que exista

(70 puntos)

Frequently Asked Questions

Is it free to get my assignment evaluated?

Yes. No hidden fees. You pay for the solution only, and all the explanations about how to run it are included in the price. It takes up to 24 hours to get a quote from an expert. In some cases, we can help you faster if an expert is available, but you should always order in advance to avoid the risks. You can place a new order here.

How much does it cost?

The cost depends on many factors: how far away the deadline is, how hard/big the task is, if it is code only or a report, etc. We try to give rough estimates here, but it is just for orientation (in USD):

Regular homework$20 - $150
Advanced homework$100 - $300
Group project or a report$200 - $500
Mid-term or final project$200 - $800
Live exam help$100 - $300
Full thesis$1000 - $3000

How do I pay?

Credit card or PayPal. You don't need to create/have a Payal account in order to pay by a credit card. Paypal offers you "buyer's protection" in case of any issues.

Why do I need to pay in advance?

We have no way to request money after we send you the solution. PayPal works as a middleman, which protects you in case of any disputes, so you should feel safe paying using PayPal.

Do you do essays?

No, unless it is a data analysis essay or report. This is because essays are very personal and it is easy to see when they are written by another person. This is not the case with math and programming.

Why there are no discounts?

It is because we don't want to lie - in such services no discount can be set in advance because we set the price knowing that there is a discount. For example, if we wanted to ask for $100, we could tell that the price is $200 and because you are special, we can do a 50% discount. It is the way all scam websites operate. We set honest prices instead, so there is no need for fake discounts.

Do you do live tutoring?

No, it is simply not how we operate. How often do you meet a great programmer who is also a great speaker? Rarely. It is why we encourage our experts to write down explanations instead of having a live call. It is often enough to get you started - analyzing and running the solutions is a big part of learning.

What happens if I am not satisfied with the solution?

Another expert will review the task, and if your claim is reasonable - we refund the payment and often block the freelancer from our platform. Because we are so harsh with our experts - the ones working with us are very trustworthy to deliver high-quality assignment solutions on time.

Customer Feedback

"Thanks for explanations after the assignment was already completed... Emily is such a nice tutor! "

Order #13073

Find Us On

soc fb soc insta


Paypal supported